inhabited
A category is inhabited (or non-empty) if it has at least one object.
Relevant implications
binary products and inhabited implies connected
For any two objects we have the zig-zag .zero morphisms and inhabited implies connected
trivialgroupoid and binary products and inhabited implies trivial
Let be an inhabited groupoid with binary products. Then it is connected, so we may assume for a group with unique object . But then , so there are such that , is bijective. From here it is an easy exercise to deduce .thin and inhabited implies cogenerator
[dualized] Any object will be a generator for trivial reasons.binary coproducts and inhabited implies connected
[dualized] For any two objects we have the zig-zag .groupoid and binary coproducts and inhabited implies trivial
[dualized] Let be an inhabited groupoid with binary products. Then it is connected, so we may assume for a group with unique object . But then , so there are such that , is bijective. From here it is an easy exercise to deduce .cogenerator implies inhabited
[dualized] trivial
Examples
- category of abelian groups
- category of Banach spaces with linear contractions
- category of combinatorial species
- category of commutative rings
- category of fields
- category of finite abelian groups
- category of finite orders
- category of finite sets
- category of finite sets and bijections
- category of finite sets and injections
- category of finite sets and surjections
- category of finitely generated abelian groups
- category of free abelian groups
- category of groups
- category of left R-modules
- category of locally ringed spaces
- category of M-sets
- category of measurable spaces
- category of metric spaces with ∞ allowed
- category of metric spaces with continuous maps
- category of metric spaces with non-expansive maps
- category of monoids
- category of non-empty sets
- category of pointed sets
- category of posets
- category of rings
- category of rngs
- category of schemes
- category of sets
- category of sets and relations
- category of simplicial sets
- category of small categories
- category of smooth manifolds
- category of topological spaces
- category of vector spaces
- category of Z-functors
- delooping of a non-trivial finite group
- delooping of an infinite group
- delooping of the additive monoid of natural numbers
- delooping of the additive monoid of ordinal numbers
- discrete category on two objects
- partial order [0,1]
- partial order of extended natural numbers
- partial order of natural numbers
- partial order of ordinal numbers
- preorder of integers w.r.t. divisiblity
- trivial category
- walking isomorphism
- walking morphism
- walking parallel pair of morphisms
Counterexamples
Unknown
For these categories the database has no info if they satisfy this property or not.
—